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We derive the extinction threshold and show that gene frequency evolution is independent of

population growth/decline. We assume that the population is large enough that gene frequency

evolution obeys average fitnesses and mutation rates. We use the symbols as defined in Supple-

mentary Table 1. Note that the wi are fixed, but w is not. We set an upper bound Smax < 1 on

the survival function S(N), i.e., 0 ≤ S(N) ≤ Smax. This upper bound expresses the assumption

that offspring survival is never 100%.

Supplementary Table 1. Symbols used in analytical derivations.

symbol definition

ni absolute number of mature virions carrying i mutations

N total population size N =
∑

i ni

pi relative frequency of mature virions carrying i mutations (pi = ni/N)

mj,i proportion of offspring with j mutations from a parent with i mutations (i < j)

wi relative fitness (offspring number) of a mature virions with i mutations (w0 = 1)

b “burst size”, absolute number of offspring produced by wild type or best virus

bwi absolute number of offspring of a parent with i mutations

S(N) offspring survival to mature virus; strictly declining with N , independent of genotype

w mean relative fitness (w =
∑

i

∑

j pjwjmj,i)
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Extinction threshold. With the definitions of Supplementary Table 1 and using primes

to denote values in subsequent generations, the dynamics of population numbers is

n′

i = bS(N)
∑

j

njwjmj,i , (1)

N ′ =
∑

i

n′

i = wNbS(N) . (2)

Gene frequency changes are given by

p′i =
n′

i

N ′
=

∑

j pjwjmj,i

w
, (3)

hence independent of population size. A similar result holds in the continuous-time version of

these equations (4).

For population decline, N ′ < N , which is simply

N ′ = w′NbS(N) < N (4)

and thus

w′bS(N) < 1 . (5)

For this inequality to hold indefinitely, we use equilibrium mean fitness and S(N) = Smax. Writing

Rmax = bSmax generates our threshold.

Mutation number in generations 1 and 2 before and after selection. We next derive

the results underlying Table 1 in the main text, especially the effect of mutation and selection in

the first generation.

We assume that a largely mutation-free template is used to infect cells and will be subjected

to mutagenesis in those cells. Such a template may be obtained from a DNA virus at the normal

mutation rate or from an RNA virus transcribed from a DNA template (1). The infection process

could be a normal one (virions infecting cells) or done by transfecting RNA/DNA into cells. To the

extent that these genomes are all the same sequence, fitness effects of mutations are irrelevant at

this point. As the next step in this process, those infections produce progeny virus with mutation

rate U per genome. Ideally, the number of virions produced with different genomic mutations

depends only on the Poisson probabilities and not on any selective effects of those mutations,

because those genomes were packaged without being expressed (an obvious violation of known

biology but perhaps not seriously affecting observed numbers). Upon viral release from this first

round of infection, and before subsequent infection, all mutations behave as if neutral, and the

average observed number will be U per genome. This result creates the first line in Table 1 in the

main text (generation 1, after mutation and before selection). One would observe this mutation

count in the genomes of the individual virions released, before they go on to infect.
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Allowing those virions to infect new cells and produce progeny now exposes 1st-generation

mutations to selection. Genomes with lethal mutations will leave no progeny, and those with only

non-lethal mutations will produce correspondingly fewer progeny than nonmutated genomes. The

mean fitness is the expected number of 2nd-generation progeny, and we will calculate this quantity

below. When those 2nd-generation virions are released, they will not only carry mutations of the

first generation (appropriately winnowed by selection), but they will also carry a second generation

of mutations. Thus, in the second generation of mutation before selection, the total mutation count

is now U plus the average that survived selection from the first generation in the parents. Thus

the third line in the table is simply U plus the second line.

We now derive the mean fitness and mean number of mutations after 1 generation of mutation

and selection. Mean fitness in the first generation is merely the sum over i of the product of the

probability of having i mutations times the fitness effect of i mutations:

w(1) =
∞

∑

i=0

wie
−Ud

U i
d

i!
. (6)

The average number of mutations in the first generation m(1) is then

m(1) = Un +
∞

∑

i=0

iwie
−Ud

U i
d

i!

/

w(1) . (7)

In the following, we develop formulae 6 and 7 for each of our specific models.

Multiplicative fitness. The first-generation effect of mutation on fitness (after selection) is

found as

w(1) =
∞

∑

i=0

(1 − s)ie−Ud
U i

d

i!
= e−sUd . (8)

The average number of mutations after this selection is

m(1) = Un +
∞

∑

i=1

e−Udi(1 − s)i U
i
d

i!

/

w(1) = U − sUd . (9)

The average number of non-neutral mutations at equilibrium was given in Ref. (2).

Eigen model. Starting with a mutation-free genotype, any genotype that acquires one or more

mutations drops in fitness to 1 − s, and only the zero class retains fitness 1. Thus, mean fitness

after one generation of mutation in the Eigen model drops to

w(1) = e−Ud + (1 − s)(1 − e−Ud) = 1 − s + s e−Ud . (10)

The average number of mutations after selection is

m(1) = Un + (1 − s)
∞

∑

i=1

ie−Ud
U i

d

i!

/

w(1)

= U −
Uds e−Ud

1 − s + s e−Ud
. (11)
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The average number of mutations at equilibrium was given in Ref. (3).

Truncation selection. Starting with no mutations, the mean fitness after one generation of

mutation in the truncation model is simply the fraction of genotypes that received k or fewer

non-neutral mutations:

w(1) =
i=k
∑

i=0

e−Ud
U i

d

i!
. (12)

The average number of mutations is

m(1) = Un +
k

∑

i=1

ie−Ud
U i

d

i!

/

w(1) . (13)

For k = 1, this expression becomes

m(1) = U −
U2

d

1 + Ud

. (14)

Our last goal is to derive the number of mutations at equilibrium. Letting xi be the frequency

of a genome with i non-neutral mutations measured after mutation and before selection, we may

write the change in frequency of the genotype with 0 mutations as

x′

0 = x0e
−Ud/w , (15)

which means that in equilibrium, we have either w = e−Ud or x0 = 0. If x0 = 0, then an expression

equivalent to equation 15 holds for x1, x′

1 = x1e
−Ud/w, and we can repeat the argument until we

reach xk. For xk, a non-zero equilibrium is xk = e−Ud . We now demonstrate that this solution is

unique.

Assume that there is a non-zero xj for j < k, with xi = 0 for i < j. Then, we have

x′

j = xje
−Ud/w , (16)

from which we again obtain w = e−Ud . Then, xk changes as

x′

k = xke
−Ud/w +

k−1
∑

i=j

xie
−Ud

U i−j+1
d

(i − j + 1)!

/

w

= xk +
k−1
∑

i=j

xi

U i−j+1
d

(i − j + 1)!
, (17)

which implies
∑k−1

i=j xi
U

i−j+1

d

(i−j+1)!
= 0. Since all xj are non-negative, this condition implies that xj,

xj+1, . . . , xk−1 are all equal to zero. Thus, there can be no j < k for which xj > 0, which proves

that our solution is unique.
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